Pandas Cheat Sheet

Python Pandas library reference guide

Pandas Cheat Sheet

Quick reference guide for Pandas DataFrame operations. Click the copy button to copy any command.

93
Total Commands
93
Filtered Results

Importing

CommandCopyDescription
import pandas as pdImport pandas library
import numpy as npImport numpy (often used with pandas)

Reading Data

CommandCopyDescription
pd.read_csv("file.csv")Read CSV file
pd.read_excel("file.xlsx")Read Excel file
pd.read_json("file.json")Read JSON file
pd.read_sql(query, connection)Read from SQL database
pd.read_html(url)Read HTML tables

Writing Data

CommandCopyDescription
df.to_csv("file.csv")Write to CSV file
df.to_excel("file.xlsx")Write to Excel file
df.to_json("file.json")Write to JSON file
df.to_sql("table", connection)Write to SQL database

Creating DataFrames

CommandCopyDescription
pd.DataFrame(data)Create DataFrame from dict/list
pd.DataFrame(data, columns=["A", "B"])Create DataFrame with column names
pd.Series([1, 2, 3])Create Series

Viewing Data

CommandCopyDescription
df.head()View first 5 rows
df.tail()View last 5 rows
df.sample(5)View random 5 rows
df.info()Get DataFrame info
df.describe()Get statistical summary
df.shapeGet dimensions (rows, columns)
df.columnsGet column names
df.dtypesGet data types
df.indexGet index

Selection

CommandCopyDescription
df["column"]Select single column
df[["col1", "col2"]]Select multiple columns
df.loc[row_label]Select by label
df.iloc[row_index]Select by position
df.loc[0:5, "column"]Select rows and column by label
df.iloc[0:5, 0:2]Select rows and columns by position

Filtering

CommandCopyDescription
df[df["col"] > 5]Filter rows by condition
df[(df["col1"] > 5) & (df["col2"] < 10)]Filter with multiple conditions (AND)
df[(df["col1"] > 5) | (df["col2"] < 10)]Filter with multiple conditions (OR)
df[df["col"].isin([1, 2, 3])]Filter by values in list
df[df["col"].str.contains("text")]Filter by string contains

Sorting

CommandCopyDescription
df.sort_values("column")Sort by column (ascending)
df.sort_values("column", ascending=False)Sort descending
df.sort_values(["col1", "col2"])Sort by multiple columns
df.sort_index()Sort by index

Adding/Removing Columns

CommandCopyDescription
df["new_col"] = valuesAdd new column
df.drop("column", axis=1)Drop column
df.drop(["col1", "col2"], axis=1)Drop multiple columns
df.rename(columns={"old": "new"})Rename column

Adding/Removing Rows

CommandCopyDescription
df.drop(index)Drop row by index
pd.concat([df1, df2])Concatenate DataFrames
df.append(other_df)Append rows

Handling Missing Data

CommandCopyDescription
df.isna()Check for missing values
df.isnull()Check for null values
df.dropna()Drop rows with missing values
df.fillna(value)Fill missing values
df.fillna(method="ffill")Forward fill missing values
df.fillna(method="bfill")Backward fill missing values

GroupBy

CommandCopyDescription
df.groupby("column").mean()Group by and calculate mean
df.groupby("column").sum()Group by and calculate sum
df.groupby("column").count()Group by and count
df.groupby(["col1", "col2"]).mean()Group by multiple columns
df.groupby("column").agg(["mean", "sum"])Multiple aggregations

Merge/Join

CommandCopyDescription
pd.merge(df1, df2, on="key")Merge on column
pd.merge(df1, df2, left_on="key1", right_on="key2")Merge on different columns
pd.merge(df1, df2, how="left")Left join
pd.merge(df1, df2, how="right")Right join
pd.merge(df1, df2, how="outer")Outer join
pd.merge(df1, df2, how="inner")Inner join

Apply Functions

CommandCopyDescription
df["col"].apply(func)Apply function to column
df.apply(func)Apply function to DataFrame
df["col"].map(dict)Map values using dictionary
df.applymap(func)Apply function to each element

String Operations

CommandCopyDescription
df["col"].str.lower()Convert to lowercase
df["col"].str.upper()Convert to uppercase
df["col"].str.strip()Remove whitespace
df["col"].str.replace("old", "new")Replace string
df["col"].str.split(",")Split string
df["col"].str.contains("text")Check if contains text

Date/Time

CommandCopyDescription
pd.to_datetime(df["col"])Convert to datetime
df["date"].dt.yearExtract year
df["date"].dt.monthExtract month
df["date"].dt.dayExtract day
df["date"].dt.dayofweekGet day of week

Statistics

CommandCopyDescription
df["col"].mean()Calculate mean
df["col"].median()Calculate median
df["col"].std()Calculate standard deviation
df["col"].var()Calculate variance
df["col"].min()Get minimum value
df["col"].max()Get maximum value
df["col"].sum()Calculate sum
df["col"].count()Count non-null values
df["col"].value_counts()Count unique values
df["col"].unique()Get unique values
df["col"].nunique()Count unique values

Pivot Tables

CommandCopyDescription
df.pivot_table(values="val", index="idx", columns="col")Create pivot table
pd.crosstab(df["col1"], df["col2"])Create cross-tabulation

Reset Index

CommandCopyDescription
df.reset_index()Reset index to default
df.reset_index(drop=True)Reset index and drop old
df.set_index("column")Set column as index

All operations are performed locally in your browser. No data is sent to any server.

About Pandas Cheat Sheet

This section will contain detailed, SEO-friendly content about the Pandas Cheat Sheet.

In the future, this content will be managed through a headless CMS, allowing you to:

  • Add detailed explanations about how to use this tool
  • Include examples and use cases
  • Provide tips and best practices
  • Add FAQs and troubleshooting guides
  • Update content without touching the code

How to Use

Step-by-step instructions for using the Pandas Cheat Sheet will appear here. This content will be fully customizable through the admin panel.

Features

Key features and benefits of this tool will be listed here. All content is editable via the CMS.